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This paper describes an experimental and theoretical study of the complicated 
disturbance (Taylor column) due to the slow relative motion between a spherical, 
or short cylindrical, rigid object and an incompressible fluid of low viscosity in 
which the object is immersed, when the motion of the object is that of steady 
revolution with angular speed 52rad/sec about an axis (the Z-axis) whose per- 
pendicular distance from the centre of the object, s, is much greater than a 
typical linear dimension of the object, L, and the undisturbed fluid motion is one 
of steady rotation about the same axis with angular speed (52 + UJR) and zero 
relative vorticity (i.e. d(U,R)/dR = 0). It extends earlier experimental work on 
Taylor cohmns to systems of sufficiently large axial dimensions for 2 variations 
in the disturbance pattern to be perceptible. Over the ranges of Rossby and 
Ekman numbers (based on L)  covered by the experiments, namely e = 1-89 x 10-3 
to 2.36 x 10-1 and y = 1.30 x to 2.03 x respectively, the axis of the 
Taylor column is found to trail in the downstream direction at a small angle 
$ = tan-l ( K E )  to the line parallel to the Z-axis through the centre of the object, 
where K = (1.54 f 0.04) for a sphere. The variation with Z of the amplitude of the 
disturbance is roughly linear and the scale-length of this variation, Z,, is close 
to L / y i  over the limited range of y covered by the experiments. 

The experimental value of K is remarkably close to the theoretical value 
derived by Prof. Lighthill in the appendix, where he applies his general linear 
theory of waves generated in a dispersive system by travelling forcing effects to 
the problem of describing a Taylor column at large distances from the moving 
object when the fluid is inviscid and unbounded. 

t Contribution No. 1932 from the Woods Hole Oceanographic Institution. 
$, Now at the Meteorological Office, Bracknell, Berkshire, England. 
3 Now at the School of Physics, University of Newcastle upon Tyne. 
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1. Introduction 
Consider an annular cavity bounded by rigid, concentric, cylindrical side-walls 

in R = R, and R = R, and by rigid, plane, parallel end-walls in Z = $0 and 
2 = -40 (the cylindrical polar co-ordinates of a general point referred to the 
axis of the side-walls being (R, 9,Z)). Suppose the cavity to be filled completely 
with an incompressible homogeneous fluid in steady motion, Eulerian flow 
velocity u = U, relative to the walls of the cavity where, except within boundary 
layers on the cavity walls, U = (0, U,, 0 ) ,  where RU. is a constant, so that 
v x u = o .  

The present paper is concerned with the effects of rapid uniform rotation of the 
whole system with angular velocity S2 = (0, 0 ,O) on the disturbance caused by 
the presence in the fluid of a small, rigid object of axial dimensions equal to hand 
transverse dimensions equal to L, fixed in position relative to the walls of the 
cavity with its centre at (R, 9, Z ) ,  where R N &(Ro + Ri), z = 0, and h and L are 
both much less than D and (Ro-Rt) .  It thus extends earlier work on ‘Taylor 
columns’ (to which slow flows past obstacles generally give rise in rapidly 
rotating fluids) to a system with sufficiently large axial dimensions for 2 varia- 
tions in the disturbance pattern, as well as other detaiIs of the flow, to be 
perceptible. 

The rotation rate is considered rapid and the relative motion slow when the 
Ekman and Rossby numbers, in this case defined as follows (cf. equations (2.6)) 

( l . l a ,  6 )  

(where v is the coefficient of kinematical viscosity) are both much less than unity, 
regarding $5 as a typical transverse dimension of the system and U&) as a 
typical relative flow velocity, V ,  (see equations (2.6)). Generally, in the hypo- 
thetical limit when E -+ 0 and y -+ 0, 

- -  - 

y = 2v/L2Q, 8 = I U@) I /QL 

everywhere (see Proudman 1916, also equation (2 .5)  below), except in certain 
singular regions, where discontinuities may arise. Taylor ( 1  923) recognized that 
equation (1.2) is only satisfied by the field of hydrodynamical flow due to the slow 
motion of a three-dimensional object through a rapidly rotating fluid when the 
column of fluid that stretches out parallel to the 2 axis from all points on the 
surface of the object to the axial extremities of the fluid is carried along with the 
object, and demonstrated the tendency for such a column to form by towing 
a short cylinder through a rotating tank of fluid. 

The walls of the hypothetical ‘Taylor column’ that occurs when y = E = 0 are 
singular regions, where the tangential component of u may be discontinuous. In 
practice, of course, neither y nor e can equal zero, but when (y  + E )  4 1 equation 
(1.2) is satisfied nearly everywhere to zeroth order in (y  + E )  (see equation (2.5 b)).  
Most of the flow is then quasi-geostrophic, the force balance being between 
Coriolis and pressure forces, to zeroth order in (y+e) (see equation (2.5a)). u is 
not, however, completely determined by (1.2), and it is necessary therefore to 
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remove the associated degeneracy by considering ageostrophic effects also. Such 
effects become pronounced and even dominant in the vicinity of the walls of the 
hypothetical Taylor column and in boundary layers that occur on the bounding 
surfaces of the system. 

All theoretical investigations relating to Taylor columns have been such that 
either y = 0 or E = 0, inertial forces being responsible for ageostrophic effects in 
the former case, viscous forces in the latter (see 5 2). Unfortunately, it is hard in 
practice to achieve the conditions (namely E < 74) under which the strictly viscous 
case, y + 0, e = 0, applies (see 5 2). On the other hand, conditions under which 
viscous effects are altogether negligible are also hard to achieve, so that any 
completely realistic comparison of theory with experiment has to contend with 
both viscous and inertial effects. 

Denote by 2, the length-scale characteristic of the 2 variation of the amplitude 
of the disturbance, and by $the angle between the ‘axis’ of the disturbed region 
and the line R = R, 9 = &. 2, and $ depend on E and y ;  by equation (1.2) $ = 0 
and 2, = 00 when 8 = y = 0. The present investigation stems from anunpublished 
study of Taylor columns by one of us (R. H.) and Mr T. Greenfield, who observed, 
more or less incidentally when using an apparatus for which ED was somewhat 
greater than in previous experiments, that the axis of the Taylor columns trailed 
downstream of the obstacle a t  a small angle, $, of the order of B. 

In  what follows an outline of previous work is given first (see 0 2). Then, in 5 3, 
an account is presented of the apparatus used in the present work, including the 
theory of its operation, and various experimental techniques. Section 4 describes 
experiments on flow past a sphere, diameter 2a = L( = h) = 2.54 em. Measure- 
ments of $ made at 9 values of 8 ranging from 0.0138 to 0.236 (y being kept 
constant at 1-36 x yield the expression 

tan$ = Ke, ( 1 . 3 ~ )  

where K = (1-54 -t 0.04) (standard errors) (1.3b) 

for the empirical relationship between $ and E. Section 5 describes a brief study 
of flow past a cylinder, and Q 6 an investigation of viscous effects on flow past a 
sphere, in which an attempt was made to achieve conditions under which viscous 
effects dominate inertial effects. Such conditions probably were achieved at the 
highest values of y and the lowest values of E attained, namely 2.03 x and 
1.89 x 10-3 respectively. The few determinations that were made of Z,, the axial 
extent of the disturbed region, suggest tentatively that 2, - Ly-4. 

Finally, in the appendix, Prof. Lighthill applies his general linear theory of 
waves generated in a dispersive system by travelling forcing effects (Lighthill 
1967) to the problem of describing the structure of a Taylor column a t  large 
distances from a moving object in an inviscid, unbounded fluid. It is remarkable 
how well linear theory can account for certain characteristics of the disturbance, 
including the value of K, near the obstacle. 
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2. Basic equations and outline of previous work 
The equations of motion governing the flow of an incompressible fluid of 

uniform density relative to a frame of reference rotating with angular velocity 

(2.1) 
au !2 = (0, 0, Q) are 
-+(u .V)u+2SLxu = -VP+vV2u 
at 

and v.u = 0, (2.2) 

where P i s  the dynamic pressure (i.e. total pressure minus the pressure associated 
with gravitational and centrifugal forces) divided by density. Eliminate P and 
thus find for the relative vorticity, 

w = v x u ,  (2.3) 

(2.4) 
am au -+ [(u .V)  0 - (0 .V)u]  - vv2m = 2Q - 
at az - the equation 

According to (2.1) and (2.4), when y < 1 and E < 1 

IVPl 

and 

V being a typical relative flow 

+ l2s2 x UI - nV(E+y) 

speed, where, in general, 

( 2 . 5 ~ )  

(2.5b) 

y = 2v/QZLZ, E = (2Q7)-1+ V/LR (2.6a, b )  

(cf. equations (l . l)) ,  7 being a time-scale characteristic of non-steady features of 
the flow pattern. It is in the limit y = E = 0 that geostrophic balance and the 
Proudman-Taylor theorem (cf. equation (1.2)), as expressed by the equations 

V P + ~ Q ~ U  = 0, aqaz = 0, (2.7a,b) 

hold exactly. As already noted in $ 1 ,  although equations (2.7) are closely 
satisfied when y < 1 and 6 < 1, the essential degeneracy present in these equations 
can only be resolved by considering also those limited regions of the fluid where 
pronounced ageostrophic effects occur. 

It will be convenient to make Use of expressions for the balance of 6, the 2 
component of o, and of [, the mean (with respect to 8) value of c for an axial 
fluid filament whose ends terminate at the axial extremities of the fluid, in 
Z = 2, and 2 = Z,, (2, < ZU). 

Consider the Z component of (2.4) when, owing to the slow average rate of 
variation with respect to 2 of u (and P) as compared with transverse variations, 
terms involving a/aZ can safely be ignored except when they are multiplied by 
the large quantity Q. Thus 

where w = ( u ) ~ ,  u1 = u - kw and V, = V - k a/aZ, k being a unit vector parallel 
to the Z axis. On imposing the appropriate boundary conditions at Z = 2, and 
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Z = Z,, taking into account Ekman boundary layers of thickness (v /Q.  n)& 
(n being the local unit normal to the bounding surface), it  may be shown that 

(see Hide 1968). According to (2.9), two processes bring about changes in vorticity 
of a moving filament: lateral friction, represented by the term vVq [, and stretching 
due to  Ekman layer suction and transverse variations of (2, - ZJ, represented by 
the other terms on the right-hand side. 

Previous work 

The original work of Proudman (1916) and Taylor (1923) gave rise to a number of 
investigations of the effects of rapid rotation on fluid flow past solid objects, 
transverse motion, the case of interest here, having been discussed by Grace 
(1927), Stewartson (1953), Hide (1961, 1963, 1966), Jacobs (1964), Hide & 
Ibbetson (1966), Lighthill (1966, 1967), and Titman (1967), (and axial motion 
by Taylor (1922), Morgan (1951), Stewartson (1952, 1953, 1958), Long (1953), 
Lighthill (1967), Bretherton (1967), Drazin, Moore and Maxworthy, see Brether- 
ton et al. (1966)). 

Each theoretical study is characterized by the nature of the ageostrophic 
effects taken into account and whether the fluid is bounded or unbounded in the 
Z-direction. Thus, Stewartson (1953) and Lighthill (1967) treat unbounded 
systems when E +  0 and y = 0, Hide (1961) (see also Hide & Ibbetson (1966)) 
treats a bounded system when e +  0 and y = 0, and Jacobs (1964) treats a 
bounded system when y + 0 and E r; 0. 

Stewartson (1953) (see also Grace (1927)) discusses the flow produced by 
jerking an ellipsoid impulsively from rest into steady motion, ageostrophic 
effects in his case being measured by the first term on the right-hand side of 
equation (2.6b), namely (2&)-l. g satisfies the equation obtained by setting 
(ul.V1)c = vVZ,[ = 0 in equation (2.8). Vorticity is generated at a (logarithmi- 
cally) infinite rate within a region of infinitesimal volume a t  the surface of the 
ellipsoid, and remains constant in singular regions on that surface and within the 
wall of the Taylor column, where inertial oscillations persist indefinitely, even 
though the flow elsewhere becomes steady and irrotational (5 = 0) only a short 
time, of order (2Q)-l sec, after its initiation. (Q, the average value of over the 
disturbed region, depends on s(Z, - ZJ/h  and thus is indeterminate in Stewart- 
son’s problem. 

Lighthill (1967, see also appendix below), who also deals with an unbounded 
system (see above), treats a steady Taylor column as a combination of inertial 
oscillations which, owing to the Doppler effect, appear to have zero frequency to 
an  observer moving with the solid object. Ageostrophic effects in this case are 
measured by the second term on the right-hand side of (2.6b). On combining the 
equation obtained by setting ag/at = vV; 5 = 0 in (2.8) with the third component of 
(2.5b) when y = 0, it is readily shown (by inspection) that (0 for the flows 
discussed by Lighthill is of order V/L.  
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Hide (1961), in proposing a theory of Jupiter’s Great Red Spot, found it 
necessary to make a crude assessment of the effect of finite axial dimensions of 
the system on the conditions, as measured by 8, for pronounced Taylor columns 
to form, E being the same as in Lighthill’s problem, namely V/LQ (see equation 
(2.6b)). Retaining only non-viscous terms in equation (2.9) and supposing that 
V / L  is a rough upper limit to (Q, he argued from this equation that h, the 
amplitude of transverse variations in (2, - Z,), must exceed ~ ( 2 ,  - ZJ. (In a later 
paper Hide (1 963) considers complications due to viscosity, density stratification 
and other factors that may arise in practice, especially in geophysical systems 
(see also Robinson (1960), Charney & Drazin (1961).) 

Jacobs (1964), who ignores inertial effects altogether (see above), describes 
the steady flow around an isolated topographical feature, transverse dimensions 
L, of one rigid bounding surface of the fluid (the other rigid bounding surface 
being everywhere perpendicular to a). Viscous ageostrophic effects are con- 
centrated in Ekman boundary layers of thickness ( v / S .  n)4 and in a detached 
shear layer of thickness (2, - 2,)t d / 4 2  Qa (the Stewartson (1957) thickness, 
assumed to be much less than L)  that forms the wall of the Taylor column. 
Neglect of inertial effects is a valid procedure here when E < y )  (a condition that 
is hard to achieve in practice). 

In  Jacobs’s work, both terms on the left-hand side of (2.9) are set equal to zero. 
Then u1 is such that filaments exactly follow those contours in planes perpendi- 
cular to In on which (Zu - 2,) remains constant, and w and [ vanish everywhere 
except in the wall of the Taylor column. Within this wall, where the two viscous 
terms on the right-hand side of (2.9) balance one another, 181 attains a high value, 
of order V/[(Z,- 2,)*d/42 at]. However, (c), the corresponding average value 
of I[\ over the whole of the Taylor column, is only V/L,  as in Hide’s case and 
Lighthill’s case. 

The original demonstration of the tendency for Taylor columns to form, an 
experiment for which y and E are not known, was made by rendering visible the 
streamlines of flow produced by towing a short cylinder of height and diameter 
equal to 0-250  across the floor of a cylindrical, water-filled tank of depth D 
(Taylor 1923). One of the experiments of Hide & Ibbetson (1966) involved 
repeating and extending Taylor’s work over ranges of 8 and y of 2.7 x 10-3 t o  
0.16 and 1.6 x 10-4 to 1.8 x 10-2 respectively. The observed flow patterns in 
planes perpendicular to S were remarkably similar in general form to those 
predicted by Stewartson (1953), suggesting that viscous Ekman layers on the 
bounding surfaces in the experiment may permit axial motions to occur even in 
the geostrophic part of the Taylor column. (By (2.5b), when y = 0 such axial 
motions can only occur when (Zu- 2,) is infinite, as in Stewartson’s case.) 

Taylor columns over depressions as well as bumps in the bounding surfaces of 
the container of a rapidly rotating fluid have been demonstrated qualitatively by 
Hide (1966), Titman (1967), and in several unpublished studies, relative motion 
between the fluid and the container being generated either by varying the angular 
velocity of rotation of the container or by passing fluid slowly through the con- 
tainer by means of a suitable source-sink arrangement. (We chose the latter 
method for the experiments described below.) 
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3. Apparatus and techniques 
(a)  Principles of operation of apparatus 

Figure 1 illustrates the relative flow in the apparatus. This flow, Eulerian velocity 
u = U in the absence of the obstacle, was produced by withdrawing liquid at 
the rate I QI cclsec at the rim or centre of a rotating cylindrical vessel and replacing 
it near the centre or rim a t  the same rate. Denote by D the depth of the tank, and 
by R, and R, the radii of curvature of the outer and inner concentric cylindrical 
side-walls. 

FIGURE 1. Schematic diagram of apparatus, drawn for the case Q > 0, 
so that U, < 0. 

The Ekman number (based on the length D )  and the Rossby number (based 
on the length (R, - Ri)) of the apparatus, respectively, 

were always much less than unity. In these circumstances, the theory of the flow 
is best considered by splitting the meridional cross-section into five regions: the 
interior region, the boundary layer on the rigid impermeable end walls near 

17  Fluid Mech. 32 
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Z = - &D and Z = 40, and the boundary layers on the source and on the sink, 
near R = R, and R = R, (see Hide 1968, especially figure 5). 

It may be shown (see Hide 1968) that in the interior region 

U = (0, - Q!2*/2nR~*, 0), V x U = 0 (3.2) 

to zeroth order in (E  + F ) ,  the negative sign implying that the relative zonal flow 
is negative (‘westward’) or positive (‘eastward’) according as fluid is withdrawn 
at the rim or at  the centre of the tank, Q being regarded as positive in the former 
case and negative in the latter. U has both radial and azimuthal components in 
the viscous Ekman layers, 95 yo thickness 36, that occur on the end walls (see 
figure l), where 

6 _= (V/Q)*  (3.3) 

and typically much less than D. U has radial, azimuthal and axial components in 
the side-wall boundary layers of thickness A,, (for the source) and Aout (for the 
sink) where 

Conservative lower limits to A,, and Aout may be obtained by considering the case 
when fluid enters or leaves the system uniformly over the cylindrical surfaces of 
the source and sink. Then 

(3.5) f in  =+ (1 + $X2)8 + is, foul =+ (1 + $F): - ix, 

where 

and R ,  , is the radius of curvature of the surface of the source or sink, R, or Ri as 
the case may be (Hide 1968). The actual values of A,, and Aouf should not greatly 
exceed these lower limits, although no one has treated the theory of the effect on 
these quantities of local variations in strength over the surface of the source or 
sink except when X < 1, in which case the values off given by equation (3.5) are 
too low by about EiLc. 

The useful range of parameters over which it can safely be assumed that U,, 
the 9 component of U, varies inversely with R within the region 121 < (4D - 36), 
(R, -F AiJ < R < (R, - AOuJ (when Q > 0) is limited by the occurrence of various 
kinds of instabilities. As the investigation of these instabilities is far from com- 
plete (Hide 1968), it  was necessary to ascertain the suitability of any given 
combination of experimental parameters by means of calibration experiments 
(see below). A safe rule is to keep the Reynolds number based on 6, 

as small as possible; Ekman layer instabilities certainIy occur when this para- 
meter attains values as high as 50 and may occur at  even lower values. The side- 
wall boundary layers are known to exhibit instabilities even when the Ekman 
layer is quite stable. 
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(b )  Construction of apparatus and techniques of observation 
and measurement 

The apparatus used in the experiments was that used previously in unpublished 
work on Taylor columns by Hide and Greenfield, but with slight modifications. 
It consisted of a circular tank, 29.2 em internal diameter, 30.9 em internal depth, 
fitted with a removable lid. Liquid could be introduced into the tank through a 
small (0.25mm) annular gap between the upper lid and the outer wall; it  was 
removed from the tank through an axial tube of outer radius Ri = 0.5 cm which 
had small perforations along its length. The flow from the centre of the tank to 

Parameter Value 
D (cm) 30.9 
Ri (em) 0.5 
50 (em) 14.6 

h (cm) 2.54 
L (cm) 2.54 

I Q I  (cc/sec) 
IQI (cc/sec) (range covered by 

v (cm2/sec) 0.88 x to 14.1 x 10-2 
6 5 (v/n$ (cm) 6.46 x to 2-64 x 10-1 

U&) = IQl/2n8%! (cmlsec) 1.01 x to 1.26 
E = v/2SZD2 
H 5 1 Q (/2nvkO(23(R~ - R:) 
I Q I l2nvRi 
I Q I /2nvR 1.86 x t o  9.06 
I Q I /2nvD 4.40 x to 2.14 
y iE 2V/LW 1.30 x t o  2.03 x lop2 
E = IQ1/2n8Cl%!L 1.89 x to 2.36 x 10-1 
eD/h 2.30 x to 2.87 

R (em) 7.3 

SZ (rad/sec) 2.10 
6.95 x lo-’ to 3-83 
2.24 x 10-1 to 3.78 

calibration experiments) 

I Q I /2nDE (cm/sec) 4.93 x 10-5 to 2.72 x 10-3 

2.19 x lop6 to 3.40 x lop5 
1-70 x to 2.13 x lop2 
2.72 x 10-1 to 132 

TABLE 1. Range of experimental parameters 

the rim was maintained externally by a centrifugal pump. The flow rate through 
the circuit was adjusted using a needle valve, and was measured by means of a 
‘Manostat ’ flowmeter. Small perturbations in the pump pressure were damped 
out using an ‘R-C’ filter consisting of a long open vertical tube of large diameter 
(capacitor) coupled into the flow circuit just before the needle valve constriction 
(resistor). Pressure fluctuations at  the pump thus produced small changes in 
level in the capacitor tube rather than variations in flow rate through the circuit. 
The tank and pumping equipment were fixed to a rotating table capable of 
rotation at  steady speeds up to lOrad/sec. The experimental parameters are 
listed in table 1. 

Fluid motions in the tank were rendered visible by releasing dye electro- 
lytically from thin (0-36 mm diameter) wires strung radially across the tank. The 

17-2 
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liquid in the tank, either water or an aqueous sucrose solution, contained a dilute 
(0.01 %, w/w) solution of thymol blue indicator, normally light amber in colour, 
which had been titrated almost to the end-point using sodium hydroxide solution. 
When a potential difference of up to 40 V was applied across the electrodes in the 
tank, the local increase in concentration of hydroxyl ions at the anode was 
sufficient to cause the solution there to change colour to its dark blue, basic form. 
The blue solution was swept from the wire by the flow, reverting slowly to its 
acidic amber colour some distance downstream of the wire after diffusion had 
restored the local pH value to normal. Because the specific gravity of the dye was 
equal to that of the working liquid, spurious effects due to buoyancy forces were 
avoided, an obvious advantage over methods employing dyes that are not 
neutrally buoyant (see Baker 1966). Another advantage of the method is that 
the solution may be used indefinitely, never needing replenishment. 

Photographs of the flow patterns were taken with a 35 mm camera capable of 
remote electrical operation and mounted on the turntable. 

(e)  ~ a l i ~ r a ~ i o n  exprimtents 

Before conducting the experiments on the flow past obstacles, it  was necessary 
to ascertain the extent to which the basic ‘interior ’ flow in the tank corresponded 
to the theoretical steady-state geostrophic value given by (3.2). Calibration 
experiments were therefore carried out without an obstacle in the tank. 

The flow was measured at only one depth in the tank. Dye was released from 
points at 1-5cm intervals along a wire stretched radially across the annulus 
midway between the top and the bottom. The dye was released periodically by 
interrupting the electrode circuit with a micro-switch actuated by a cam on a 
timing motor. The interruption rate was adjusted so as to give a reasonable 
separation between successive dye streaks at all radii for a given flow rate. 
Photographs of the dye streaks were then obtained over almost as wide a range 
of flow rates as would be used in the main experiments. The photographs showed 
concentric sets of dye streaks, the azimuthal separation of the streaks at one 
radius being proportional to U,, the 9 component of U. U,(R) was determined 
from measurements of the separation of the dye streaks and the interruption 
frequency. 

The results of the calibration experiments are shown in figure 2. Here, the 
observed values of the quantity RU, are plotted as a function of R. Theoretically, 
(see equation (3.2)), RU, should equal - Q/27r8 (indicated on the right-hand side 
of the graph for each experiment) outside the boundary layers. If we take as the 
boundary layer the region where the ratio [RU4/(Q/2n8)I is less than 95%, 
according to figure 2 the boundary-layer thickness a t  the outer wall is about 
3 em, while that at the inner wall is about 4 em (although there are fewer measure- 
ments there). The ‘interior’ of the fluid thus extends about 3.5 em on either side 
of a mean radius of about 7.5 em in the annulus. 

These calibration experiments showed (i) that over the range of conditions 
studied (see figure 2 )  the flow in the ‘interior ’ of the annulus was geostrophic (and 
therefore two-dimensional) to within the accuracy of the calibration experiments 
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( ? 5 % overall) and (ii) that the radial dimensions of the ‘interior’ region were 
about 7 em, presumably sufficient for the performance of Taylor column experi- 
ments using an obstacle of width not greater than 3 cm centred at R = R = 7.3 em. 

4. Flow past a sphere at constant Ekman number 
I n  the &st experiment the obstacle was a sphere of diameter 

2a = h = L = 2.54cm 

(see table 1). It was held fixed in position relative to the annular tank, with its 
centre 7.3 em from the axis of the tank and exactly midway between the end- 

10 
E 

6 

4 

2 

d 
I 

E l  
2 0-8 

b* 0.6 
a; 

0.4 

0 

0.2 

I 1  I I I I I I 1  0.1 
0 2 4 6 8 1 0 1 2 1 4  
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6.65 

4.51 

236 
... 
I 0 

8 
1-27 “g 

0 

“0 
fi 
hl 
\ a 

0.523 

FIGURE 2. Results of calibration experiments. RU+ is plotted as a function of R; in the 
interior region, RU+ should be a constant whose value, &/2nS, is indicated on the right-hand 
side of the graph for each experiment. 

walls, by means of a thin, rigid wire (diameter 0.1 em) stretched along the radius 
of the tank in 2 = 0 that passed through the centre of the sphere, azimuthal 
co-ordinate 8 = s. Water was the fluid in the tank. 

I n  this experiment Q was negative, so that U, was positive (see equation (3.2)). 
Stream surfaces of the flow over the sphere were made visible by continuously 
releasing blue dye at the horizontal wires stretched across the annulus at 
9 = 8- 22”, 2 = 2, = 1.1, 2.9, 5.0, 7-2, 9.2, 11.1 and 12.9 em. Photographs were 
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obtained showing the distortion due to the presence of the sphere of the initially 
horizontal stream surfaces. Figure 3 ,  plates 1 to 3,  shows three examples, come- 
sponding to different values of E ,  of the appearance of the dye surfaces when 
looking towards the axis of the tank along the radiuson which the sphere was fixed; 
hence, Z increases upwards and 9 from left to right. Figure 4 a ,  plate 4 ,  shows one 
example of the appearance of the dye surfaces looking into the tank at  right 
angles to the radius through the centre of the sphere in the negative 9 direction 
from downstream of the sphere; hence Z increases upwards and R from right to 
left. Figure 4 b ,  plates 4 and 5 ,  illustrates the distortion of a line of dye released 
from a wire upstream of the spherical obstacle looking at right angles to the radius 
through the sphere in a direction parallel to the negative 2 axis. It should be 
emphasized that in figures 3 a-c and figure 4 a the appearance of the dyed stream 
surfaces was independent of time: in each case the distribution of dye had 
reached a steady state before the photograph was taken. 

Denote by 8(R, 9,ZJ the axial displacement directed away from the plane 
Z = 0 of a dyed stream-surface which, in the absence of the sphere, would occupy 
the plane Z = 2,. Denote by (B,(Zs), B,(Z,)) the radial and azimuthal co- 
ordinates of the point where 8 has its maximum value, 8,(ZS), on that distorted 
dyed stream-surface whose undisturbed equation is Z = 2,. 

According to figures 3 and 4, 8 is positive above most of the sphere, but 
negative over a small region (to the left of the sphere as seen in figure 4 a ,  and in 
the foreground and slightly downstream of the sphere in figure 3). 

For the conditions illustrated by figure 4 a ,  R,, the radial co-ordinate of the 
position of maximum 8,  was slightly less than R, the radial co-ordinate of the 
centre of the sphere. A subsidiary investigation, involving changing the sign of 
Q and the sense of rotation of the apparatus, showed that the sign of (R, - R) is 
the same as that of the radial component of S2 x U (so that the slight radial 
displacement of the Taylor column is in the direction of high to low (dynamic) 
pressure associated with the basic current) and demonstrated that this displace- 
ment is not connected with the sense of shear or curvature of the streamlines of 
the basic flow. 

Returning now to the experiments illustrated by figures 3 and 4 ,  it would seem 
that 8, decreases slowly with 2, (cf. figures 3 a ,  b and c). The same figures show 
that (8, - 9) is positive and increases with Z,, corresponding to a downstream 
‘trailing ’ of the Taylor column. Moreover, the rate of increase of (9, -8) with 2, 
is most pronounced at the highest values of e (see figure 3). 

From photographs similar to those presented in figure 3,  taken at 17 different 
values of E ,  ranging from 4.32 x 
see table 1 and equations ( l . l ) ) ,  the determinations of 8, presented in table 2 
were obtained. For 9 of these values of E ,  ranging from 1-38 x to 0.236, 
(am-??), though small, was also measureable (see table 2 ) .  In making these 
determinations it was necessary to correct for optical distortions of the photo- 
graphic images. These distortions were due to refraction effects in the cylindrical 
tank, which magnified distances in the azimuthal direction by a factor 1-18, and 
in the vertical direction by a factor 1.06. 

The measurements of Z,, fjm(Zs) and R,(9, - 8) from the photographs were 

to 0.236 (7 being kept constant at  1-36 x 
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2 s  

(em) 
8 

1.1 
2.9 
5.0 
7,2 
9.2 

11.1 
12.9 

1.17 x 10-1 
r------*------7 

0.51 1.3 
1-04 1.2 
1.38 0.9 
1.96 0.7 
2.13 0.4 
2.42 0.3 

1.19 x 10-1 8.95 x 
-7 

0.29 1.3 
0.63 1.3 
0.80 1.0 
1.21 0.7 
1.33 0.6 
1.55 0.4 
1.67 0.2 

1.38 x 

8 

1.1 
2.9 
5.0 
7.2 
9.2 

11.1 
12.9 

e 

0.41 1.3 
0.80 1.2 
1.15 1.0 
1.50 0.7 
1.72 0.5 
2.19 0.3 

6.23 x lo-' 
& 

0.17 1.3 
0.35 1.3 
0.51 1.0 
0.75 0.8 
0.86 0.6 
1.09 0.4 
1.09 0.3 

1.06 x 
-7 

0 1.2 
0 1.0 
0 0.9 
0 0.8 
0 0.6 
0 - 

3.36 x lo-' - 
0 1.2 
0.12 1.2 
0.17 1.0 
0.29 0.7 
0.41 0.5 
0-46 0.4 
0.51 0.3 

9.95 x 10-3 

0 1.2 
0 1.1 
0 0.8 
0.06 0.5 
0.06 0.4 
0.17 0.4 
0.12 0.3 

9.01 x 1 0 - 3  

1.1 
2.9 
5.0 
7.2 
9.2 

11.1 
12.9 

8 

1.1 
2.9 
5.0 
7.2 
9.2 

11.1 
12.9 

0 1-4 
0 1.1 
0 0.9 
0 0.7 
- - 

0 1.1 
0 0.9 
0 0.8 
0 0.7 
0 0.6 

7.41 x 10-3 6.68 x 5.78 x 10-3 

0 1.1 
0 0.9 
0 0.7 
0 0.6 
0 0.4 
- - 

e 

1.1 
2.9 
5.0 
7.2 
9.2 

11.1 
12.9 

r \ 

0 1-2 
0 1.0 
0 0.9 
0 0.8 
0 0.6 
- - 

r 1 

0 1.0 
0 0.8 
0 0.7 
0 0.5 
0 0.4 
- - 

5-10 x 10-3 

0 0.8 
0 0.6 
0 0.5 
0 0.4 
0 0.3 

4.32 x 10-9 
w\ 

0 0.7 
0 0.5 
0 0.45 
0 0.35 
0 0.25 
- - 

8 

1.1 
2.9 
5.0 
7.2 
9.2 

11.1 
12.9 

TABLE 2 
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each subject to an uncertainty of f 0.1 em. Measurements of t: involved uncer- 
tainties varying from about f 2 % at large values of t: to about k 5 % a t  small 
values; they were incurred in the determination of the flow rate Q by reading the 
flowmeter on the rotating table. The errors in measuring other parameters were 
estimated to be much less than 1 % in each case. 

The experimentally determined variation of Rm(9, - 3) with Zs (see table 2) 
for each value oft: is well represented by the empirical relationship 

Rm(9, - 9) = Zs tan $ (4.1) 

except in the two cases t: = 3-36 x where the data 
suggest a roughly hyperbolic variation whose asymptote satisfies (4.1). The 
values of tan $ thus determined for different values of t:, together with estimated 

and t: = 1.38 x 

tan $ 
0.356 f 0-016 
0.305 f 0.007 
0.278 & 0.008 
0-238 0.010 
0.187 _+ 0.005 
0.143 f 0.005 
0.097 f 0.004 
0.047 f 0.004 
0.018 k 0.003 

€ 

2-36 x 10-1 
2.05 x 10-I 
1.76 x 10-1 
1-47 x 10-1 
1.19 x 10-1 
8.95 x 
6.23 x 
3.36 x 10W 
1.38 x 

Also: D = 30.9 em 
R, = 0-5 em 
C! = 2*10rad/sec 
Q < O  y = 1 . 3 6 ~  

TABLE 3 

2a = h = L = 2.54cm 
R, = 14.6cm 
v = 0.92 x 10W cmz/sec 

errors, are given in table 3 and plotted in figure 5. It is clear from figure 5 that the 
data are well represented by a linear relationship, 

tan$ = Ks, (4.2) 

K = 1.54 & 0.04 (standard error, 9 points) (4.3) 

where, by a least-squares analysis, 

(cf. equation (1.3)). 
The foregoing results agree with Lighthill’s conclusions that Taylor columns 

should trail at  an angle of the order of the Rossby number to the Z axis (see 
appendix). Moreover, within the (small) errors of measurement, the measured 
value of K does not differ significantly from Lighthill’s theoretical value. This 
agreement between experiment and theory is remarkable, considering the simpli- 
fications of the theory, which treats the flow field at great distances from a sphere 
in an unbounded, inviscid fluid. 

Table 2 shows that in the experiment just described, the variation of 8, with 
Zs does not depend significantly on t:. We shall defer the discussion of this varia- 
tion until § 6 ,  where it is shown, by studying the effects of viscosity on the flow 
patterns just described, that d8,Jd.Z depends mainly on y ,  the Ekman number. 
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5. Transverse flow past a cylinder at constant Ekman number 
Figure 6 ,  plates 6 and 7, illustrates observations of flow past a right circular 

cylinder, h = 2-54 em, L = 2.54 cm, obtained in the same way as those of flow past 
a sphere described above in Q 4 (cf. figures 3 and 4), for one value of E ,  namely 
9.1 x typical of the range of E studied. 

0.4 - 

0.3 - 

-s. 
5 0.2 - 
+ 

€ 

FIGURE 5. Graph of tan $ versus E for the sphere. y = 1-36 x 

Although figures 6 c  show a distinct tendencyfor a Taylor column to form, 
figures 6a and b show that the flow pattern was more complicated than in the 
case of a sphere. As in that case, the sign of (Rm-R) ,  the displacement of the 
position of maximum 8, was the same as the sign of the radial component of 
8 x U (see figure 6 b ) ,  and negative values of 8 were found on the other side of the 
axis of the cylinder. Owing to the complexity of these patterns, no attempt was 
made to carry out an extensive series of measurements (cf. 0 4). This complexity 
was due, presumably, to the abrupt changes in slope associated with the walls of 
the cylinder (cf. equation (2.9)). 
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6. Transverse flow past a sphere: effect of increasing the viscosity 
The experimental results described in $ 4  and listed in table 2 show that, a t  

any given value of e, 8m, the maximum amplitude of the axial distortion of the 
stream surface originally at  a distance Z = Zs from the plane 2 = 0, decreases 
with increasing 2,. That this decrease is linear, of the form 

where 8m(0)  and 2, are constants for given e and y ,  is consistent with the experi- 
mental measurements (see table 2) .  

(a)  
3Tnm 2, 

Y & (em) (em) 

1.36 x 10-3 2.36 x 10-1 1.38 11.8 
2.05 x 10-1 1.36 13.2 
1.76 x 10-1 1.48 12.6 
1.47 x 10-1 1.45 13.6 
1.19 x 10-1 1.47 14.1 
8.95 x 1.48 15.0 
6.23 x lop2 1.47 15.8 
3.36 x 1.36 15.8 
1.38 x 10W 1.24 15.3 
1-06 x 1.25 18.3 
9.95 x 10-3 1-48 13.2 
9.01 x 10-3 1-13 19.2 
7.41 x 10-3 1.25 18.3 
6.68 x 1.05 14.4 
5.78 x 10-3 1.16 14.0 
5.10 x 10-3 0.82 14.0 
4-32 x 10-3 0.71 13.9 

1.27 mean 14.8 mean 
( b )  

1.30 x 10-3 2.42 x 1.28 19.0 
5.65 x 10-3 1.12 x 10-2 1.33 11.4 
2.01 x 10-2 6.04 x 10-3 1.49 7.9 
2.01 x 10-2 1.89 x 10-3 1-32 8.0 

TABLE 4 
1.35 mean 

The variation of sm(0) and 2, with 8 for one value of y ,  namely 1.36 x 10-3, is 
shown in table 4a. Evidently 2, varies very slowly, if at all, with e, and, with the 
possible exception of the cases when 8 > 0.15, we may take 2, = (14.8 0.5) em 
and independent of e. It is also noteworthy that the mean of the 17 values of 
fjm(0) given in table 4a is exactly equal to the radius of the sphere, 1.27cm, 
although the spread of values about the mean is quite large. 

The dependence of 2, on y was investigated by repeating the procedure 
described in $ 4  but using aqueous solutions of sucrose instead of water as the 
working fluid. (The kinematical viscosity of these solutions was determined by 
means of a Fenske Routine Viscometer, which involved measuring the time taken 
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for a known volume of liquid to flow through a capillary tube past a fiduciary 
mark, small temperature corrections being estimated by interpolation from tables 
(Handbook of Chemistry and Physics, 1963)). As before, photographs of dye 
produced by radial wires upstream of the sphere were obtained, and 8, a t  each 
value of 2, was tabulated for each photograph (see table 5 ) .  It was not possible 
to hold E constant in these experiments, but in view of the lack of dependence of 
2, on E found earlier, this difficulty was probably not serious. 

v (cm2/sec) 
E 
Y 
€ 

2, 
(cm) 
1.1 
2.9 
5.0 
7-2 
9.2 

8.84 x 10-3 

1-30 x 10-3 

3 m  
(em) 

2.17 x 

2.42 x 

1.3 
1.0 
0.9 
0.8 
0.7 

3.82 x 
0.96 x 10-5 
5.65 x 10-3 
1.12 x 10-2 

3, 
(cm) 
1.3 
0.9 
0.7 
0.5 
0.3 

TABLE 5 

1.37 x lo-' 
3.40 x 
2.01 x 10-2 
6.04 x 10-3 

3 m  
(cm) 
1.4 
0.8 
0.5 
0.2 
- 

1.37 x 10-1 

2.01 x 10-2 
3.40 x 10-5 

1.89 x 10-3 

3 m  
(cm) 
1.2 
0.8 
0.4 
0.2 
- 

* 
t 
L 

v (cm2/sec) 2, (cm) Y Z,YflL ZCY+IL 
9.28 x 10-3 14.8 & 0.5* 1.36 x 10-3 1.14 0.04 0.22 f 0.01 
8.84 x 10-3 19.0 f 3.6t 1-30 x 10-3 1.39 f 0.26 0.27 k 0.05 
3.82 x lop2 11.4 & 1.4t 5.65 x 10-3 1.24 f 0.15 0.34 0.04 
1.37 x lo-' 7.95 f 1.o-f 2.01 x 10-2 1.18 k 0.15 0.44 & 0.06 

Mean of 17 readings and standard error of mean; see table 4. 
Standard errors obtained from least squares calculation using data of table 5. 
= 2.54 cm and was not varied. 

TABLE 6 

Values of Bm(0) and 2, based on table 5, assuming the validity of equation (6. l), 
are given in table 4b. While 8,(0) is more or less independent of y and very nearly 
equal to the radius of the sphere, 2, evidently decreases with increasing y. Table 6 
lists the mean value of 2, for the experiments described in 0 4 (see table 4 a )  and 
the three values of 2, given in table 4b. Values of Z,y4/L and, for comparison, 
2,ytlL are also shown. The apparent lack of systematic variation of 2,yalL 
with y, and the fact that this quantity is close to unity, suggests that 2, might, 
in fact vary as y-4. This result is tentative, of course, and should be tested in the 
future by means of experiments covering a wider range of y than that used in the 
present investigation. It will also be important in future work to attain values of 
40 significantly in excess of LIE, so that the dependence of EC on E can be 
determined. 

The extent to which 2, can be regarded as a useful measure of the length of the 
Taylor column is not clear, in the absence of detailed knowledge of the relation- 
ship between 8 and the transverse field of motion. The experimental determina- 
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tion of this relationship-a lengthy though probably useful undertaking-lies 
beyond the scope of the present work. 

If 8, can be regarded as a useful measure of the length of the Taylor column, 
then the fact that 8, depends on y suggests that the Taylor column terminates 
when the thickness of a detached viscous shear layer that forms the wall of the 
column is equal to If the thickness of this shear layer depends only on 8, v 
and 0, then it must vary as 2(1--2*)(v/QZ)~ and if Z,oc Ly-4, then q = +. In  the 
strictly viscous case discussed by Jacobs (see 0 2) the detached shear layer form- 
ing the wall of the Taylor column has the Stewartson thickness, for which q = $. 
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Appendix. Theoretical considerations for the steady inviscid case with 
Rossby number small but not zero 

By M. J. LIGHTHILL 

This appendix sets out some theoretical considerations, for comparison with the 
experiments described in the paper, in cases when the transverse motion of the 
obstacle is steady, the Ekman number is negligibly small, and the Rossby number 
is small but not negligibly so. 

Preliminary study of this problem for obstacles of general shape was given by 
Lighthill (1 967), who started from the assumption that the disturbances cannot 
remain of ‘Taylor column’ character, or indeed of any unattenuated form, all the 
way to infinity. At sufficiently large distances from the obstacle, he argued, they 
must become weak, and therefore must take the form of stationary inertial waves; 
essentially, because inertial waves are the only possible form of small disturbance 
to a homogeneous rotating fluid, and because waves in flow that is steady (relative 
to the obstacle) must be stationary. 

Lighthill (1967) obtained results on the possible distribution of such waves 
that can be expressed as follows. If the obstacle moves with velocity ( U ,  0,O) 
through fluid rotating with angular velocity (0 ,  0, Q), then waves of wave-number 

KCOS$, tcsin$ 
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where the x-component is necessarily related to the x- and y-components as shown 
(Lighthill 1967, equation (67))’ are found in directions 

relative to the position of the obstacle. Here the .,/(P+m2) in equation (71) of 
Lighthill (1967) has been replaced by K ,  while his figure 11 shows that the choices 
of sign in (A 1) and (A 2) must be the same if cos q5 is positive and different if cos $ 
is negative. 

Obstacles moving at  small Rossby number are expected to generate waves with 
K small in relation to 2Q/U and so the axial component of wave-number, 
k ( U K ~ / ~ Q )  cos q5 in (A l), is small compared with the radial component K (which 
therefore is to  close approximation the magnitude of the wave-number vector). 
This fact (which, actually, was used in deriving (A2)) means that surfaces of 
constant phase for all the waves make small angles with the axis of rotation, and 
that waves are found only in directions (measured from the obstacle) close to that 
of the axis of rotation. Specifically, waves of length 2n-l~ are found on two cones 
(swept out by the directions (A 2) as $ varies), each with axis trailing at an angle 

behind the axis of rotation, and with semi-angle 4( UK/~Q). 
Lighthill (1967) points out that a given obstacle will generate waves most of 

whose energy lies in a range of values of K from 0 to some upper limit of the order 
of the reciprocal of a linear dimension of the obstacle. He indicates in his figure 12 
how these waves would fill a region obtained by superimposing the cones just 
described for all values of K in this range, and shows the sorts of shapes of surfaces 
of constant phase that would be expected in this region. 

In  order to apply this theory to a particular obstacle, such as the sphere in 
Hide & Ibbetson’s experiments, we must estimate h s t  what range of values of the 
radial wave-number K will be generated locally by the obstacle. There is no need 
to estimate the x-component of wave-number (which actually might be more 
difficult) because, in terms of the 2- and y-components, the z-component of wave- 
number of all wave energy found at large distances from the obstacle is con- 
strained to take the form shown in (A 1). Thus, only the distribution of K and $ 
need be estimated. Of these, K is the more important, since it specifies through the 
angle (A 3) the axis of the narrow cones whereon the waves lie; by contrast, q5 
specifies merely their position on those cones. 

Now, we know that the motion generated locally by the sphere for small 
Rossby number consists of a ‘ Taylor column ’, whose motion through the rest of 
the fluid sets up locally an approximately two-dimensional flow. The x com- 
ponents of wave-number of that local disturbance would, as we have said, be 
hard to estimate, because they are associated with the departures from two- 
dimensionality. By contrast, the x- and y-components (K cos $, K sin $) can be 
estimated solely from a knowledge of the two-dimensional flow field to which the 
motion near the Taylor column approximates. 
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For example, if that were the irrotational motion produced by the Taylor 
column moving through the fluid like a solid cylinder, the x- and y-components of 
velocity would be 

u= U ,  v = O ,  ( r < a )  

u = i7(az/r2) cos 28, w = U(az/r2) sin 28, (T 2 a) ,  (A 4) 

where x = rcos 8, y = rsin8 and a is the radius of the sphere. In  this case the 
velocity spectrum for the two-dimensional flow, generated locally by the motion 

FIGURE 7 

of the Taylor column, and assumed irrotational, is shown in graphical form in 
figure 7 ,  which plots the variation with K in the component of either u or v with 
wave-number ( K  cos 46, Ksin 9). The spectrum amplitude exceeds 13 % of its 
maximum value only for 

so that 3.3/a might be taken as the effective upper end of the range of radial 
wave-numbers. The ‘centroid’ of the spectrum is at  

0 < K < 3-3/cC, (A 5 )  

Actually, the local flow in and around the Taylor column is by no means 
exactly as in (A 4). Within the column some deviation from the uniform velocity 
( U ,  0) occurs, and outside it there is a still greater deviation from irrotationality. 
However, the general picture of the variation of velocity spectrum with K ,  given 
by figure 7 ,  is probably still valid for this real flow. Substantial amplitudes for 
values of K exceeding about 3/a are unlikely, and the centroid of the spectrum is 
probably near K = a-l. 
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In  support of this view is the fact that both the flow assumed (not too inac- 
curately) in (A4) for r 6 a, and that assumed (somewhat less accurately) for 
r 2 a, separately have Fourier components varying with K as in figure 7 .  Also 
streamline patterns derived experimentally give no indication of radial wave- 
numbers differing greatly from those associated with irrotational flow. Note that 
the flow (A 4) already embodies a concentrated vortex sheet at  r = a; and that the 
high-wave-number end of the spectrum ought not to be increased by this 
vorticity being ‘smudged out’ into a boundary layer. 

The process whereby velocity disturbances with a spectrum something like 
figure 7 generate waves far from the obstacle is without doubt complex, and to 
some extent non-linear. Accordingly, the x- and y-components ( K  cos q5, K sin q5)  
of wave-number of these waves may take values including not only those which 
are in the spectrum near the source, but also, for example, sums and differences 
of them. This is unlikely, however, to alter the conclusion that amplitudes will be 
biggest for a range of radial components of wave-number K centred as in (A 6) on 
about l/a, where a is the radius of the sphere. 

If this is so, then the centre of the disturbance associated with these waves will 
trail, according to (A 3), at an angle about 

K (  U/2Qa), (A 7) 

where K = #. This conclusion is well borne out by experiments described in the 
paper, which obtained K = 1.54 f 0.04 (see equations (1.3b) and (4.3)). 

The method of observation used is, to be sure, sensitive to the z component of 
fluid displacement, whereas the argument picking out the radial wave-numbers 
that are likely to be generated started from a Fourier analysis of the x- and 
y-components of velocity (A 4). It might be supposed that this argument would 
only pick out the centre of the disturbances of x- and y-velocity at  large distances. 
However, the z-component of fluid displacement must be directly in phase with 
the x- and y-components of velocity, since fluid particles in any inertial wave 
move in circular paths on the surfaces of constant phase, and we saw that the 
motion far from the obstacle is made up of inertial waves with those surfaces all 
making small angles with the z axis. 

Again, it  might be thought that the argument is wrong in using the two- 
dimensional Fourier components, proportional to J1(Ka)/Ka, as an indication of 
wave amplitude distribution at  a large distance. The distribution of wave energy 
might be supposed to be distorted by an additional factor K because the area of the 
two-dimensional wave-number plane with values of K lying in a given interval 
( K ,  K + SK) is 2 7 ~ 8 ~ .  This idea would be wrong, however, because the wave energy 
for which K lies in this interval will be spread through the region between the two 
cones which the directions (A 2) sweep out for radial wave-numbers K and K + SK. 
The area between these, at  a cross-section x = constant, is also a multiple of KSK, 
so that the K factor cancels out and does not appear in the energy density far 
from the obstacle. The amplitude distribution is, therefore, unaffected by these 
considerations. 

in 
(A 7) is almost embarrassingly close, since the value predicted is simply that for 

Nevertheless, the experimenta1 agreement with the predicted value K = 



272 R. Hide, A .  Ibbetson and M .  J .  Lighthill 

the centroid of the spectrum assuming only linear generation processes, and 
non-linear generation processes would be expected to distort that spectrum. In  
fact, the agreement indicates that they do not materially alter the position of the 
spectrum’s centroid. 

Thus, we may conclude provisionally that the trailing character of disturbances 
generated by forcing effects in rotating fluids can be predicted to reasonable 
approximation by the technique (Lighthill 1967) of drawing normals to the 
wave-number surface in those parts of it which correspond to the wave-numbers 
principally excited by the forcing effect. 
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(4 
FIGURE 3. Illustrating tlic distortion of the dye shoots released by the wircs upstream of a 
spherical obstacle looking inward along a radius through t,hc ccntrt: of the sphere. (a ) ,  ( b )  
and (c) correspond t o  the different Rossby numbers, E = 0.205, 0.0895 and 0.0336 
respectively (see table 2 for full detds) .  8 iricrcases from lcft to right. y = 1.36 x 
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FIGURE 4(a )  

FIGURE 4 ( h i ) .  For legend sets platc 5. 
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FIGURE 4 ( b  ii) FIGURE 4 (b  iii) 

FIGURE 4(a ) .  Illustrating the distortion of the dye sheets released by the wires upstream of' 
a spherical obstacle looking at  right-angles to a radius through the centre of the spherc 
from downstream of the sphere. 6 = 9.01 x (see table 2 for fill1 
dobails). R increases from right to left. (The distortion of the dye sheets men a t  the right- 
hand side of the picture is due to axial motion in the vicinity of the inner wall of' thc 
annulus, in accordance with the flow illustrated in figure 1 . )  

( b )  Illustrating tho distortion of a line of dye released from a, wire upstrcam of a spherical 
obstaclc looking at  right angles to the radius through the sphere in a direction parallel t,o 
t>he negative Z axis (rotation counterclockwise). The time intervals between consecutive 
pictures were approximately equal. 6 = 5.78 x 

y = 1.36 x 

y = 1.32 x and 2, = 5.0 cm. 
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FIGURE 6 ( h )  



Plate 7 

FIGURE 6 (cii) FIGURE 6 (c i i i )  

FIGURE 6. Illustrating the distortion of dye sheets rcleascd by wires upstream of a 
cylindrical obstacle (a )  looking inward along a radius through the centre of the cylinder, 
( b )  looking at  right angles to the radius through the centre of the cylinder from down- 
stream of the cylinder, and ( c )  looking at  right angles to the radius through the centre of the 
cylinder in a direction parallel to tho negative 2 axis (rotation counterclockwise) ; the timc 
intervals between consecutivc pictures in ( c )  were approximately the same. Experimental 
details: (a )  and ( b )  B = 9.14 x 
Z, = 50cm. 

y = 1.36 x ( c )  6 = 1.38 x y = 1.32 x 
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